南湖新闻网

首页 > 新闻 > 科学研究 > 正文

我校研究团队在害虫抗药性治理领域取得新进展

核心提示: 近日,我校植物科学技术学院李建洪教授领衔的农药毒理学与有害生物抗药性团队研究成果发表。研究人员研发了一种基于抑制害虫抗药性关键基因表达而实现害虫高效治理策略的纳米助剂MON@CeO2,为靶向害虫抗药性的治理策略提供了新视角及技术手段,也为我国水稻等作物杀虫剂减量使用和绿色高质量安全生产提供了一种新的途径。

南湖新闻网讯(通讯员 曾庆红 于畅)近日,我校植物科学技术学院李建洪教授领衔的农药毒理学与有害生物抗药性团队研究成果以“CeO2 nanohybrid as a synergist for insecticide resistance management”为题在Chemical Engineering Journal发表。研究人员研发了一种基于抑制害虫抗药性关键基因表达而实现害虫高效治理策略的纳米助剂MON@CeO2,为靶向害虫抗药性的治理策略提供了新视角及技术手段,也为我国水稻等作物杀虫剂减量使用和绿色高质量安全生产提供了一种新的途径。

化学农药已经成为现代农业不可缺少的重要生产资料,而农药的不科学合理使用将会导致害虫抗药性暴发,严重影响粮食安全。褐飞虱(Nilaparvata lugens)是水稻生产上首要害虫,因其危害严重被农业农村部列入《一类农作物病虫害名录》。近年来,化学农药的不合理使用等使褐飞虱田间种群抗药性水平居高不下(Liao et al., 2021 Insect Sci),导致该害虫屡屡暴发成灾

研究团队在多年对褐飞虱抗性监测和抗药性机制研究基础上,发现褐飞虱解毒酶细胞色素P450基因(NlCYP6ER1等)过表达是介导褐飞虱对目前广泛应用的新烟碱类杀虫剂产生抗性的主要原因(Mao et al., 2019 Pestic Biochem Physiol; Liao et al., 2019 Pest Manag Sci; Mao et al., 2021 Insect Sci; Jin et al., 2021 Pest Manag Sci)。此外,杀虫剂暴露会增加褐飞虱体内ROS水平,进一步介导其体内解毒酶基因上调表达(Zhang et al., 2021 Pest Manag Sci)。同样,解毒代谢酶细胞色素P450基因过表达引起靶标害虫对常用杀虫剂产生抗性在白背飞虱、棉蚜、草地贪夜蛾等重大害虫中具有普遍性。

图1 MON@CeO2的制备流程及“克抗”机制

MON@CeO2的制备流程及“克抗”机制

基于团队前期研究,以害虫抗药性主要基因为靶标,创新性的制备了一种抑制害虫抗药性基因表达水平的纳米助剂MON@CeO2。MON@CeO2具有类SOD酶活性,可显著抑制褐飞虱体内ROS水平,从而抑制抗药性P450基因(NlCYP6ER1、NlCYP6CW1和NlCYP4CE1)的表达。MON@CeO2和杀虫剂联合使用后,可显著降低褐飞虱抗药性种群P450基因表达水平,从而显著提高主要杀虫剂的生物活性,表现出良好的杀虫剂增效和抗药性延缓潜能。

此外,研究发现MON@CeO2可显著提升杀虫剂对白背飞虱、草地贪夜蛾和棉蚜抗药性种群的毒力,表现出广谱高效的杀虫剂增效助剂性能,具有广阔的应用前景。本研究立足作物绿色高质量安全生产的重大需求,为突破重要害虫抗药性引发的防控瓶颈问题构建了创新性防控策略,为害虫抗药性高质量治理及农药的减量增效使用提供技术支撑。

植物科学技术学院硕士研究生曾庆红和博士研究生于畅为该论文第一作者,万虎副教授为论文通讯作者,李建洪教授、何顺副教授和马康生副教授参与了项目的指导,以上研究得到国家重点研发计划、湖北省重点研发计划等项目的资助。

审核人:李建洪

【英文摘要】

Agricultural applications of nanomaterials, such as nanofertilizers, nanopreservation technologies, nanopesticides, and plant nanosensors, have recently attracted much attention. Herein, the CeO2-based nanohybrid MON@CeO2 was designed as a reactive oxygen species (ROS) inhibitor to effectively improve the susceptibility of insect pests to insecticides. MON@CeO2 was fabricated by intercalating CeO2 into mesoporous organosilica nanoparticles (MONs). The obtained MON@CeO2 showed a regular spherical shape with an average particle size of 45.4 nm, good monodispersity, and a negative surface charge (-14.6 mV). Bioassay results showed that MON@CeO2 significantly enhanced the toxicity (more than 2-fold) of nitenpyram, sulfoxaflor, and clothianidin against laboratory insecticide-resistant and field strains of Nilaparvata lugens. In particular, MON@CeO2 orchestrated host detoxification metabolism via downregulating ROS-dependent P450 gene expression, thus reducing host detoxification enzyme activities to overcome insecticide resistance. Furthermore, MON@CeO2 restrained host insecticide resistance in the notorious agricultural pests Aphis gossypii, Spodoptera frugiperda, and Sogatella furcifera. Therefore, MON@CeO2 could be used as a broad-spectrum nanosynergist against insecticide resistance, which would be a novel strategy for sustainable pest management.

论文链接

https://linkinghub.elsevier.com/retrieve/pii/S1385894722025669

责任编辑:徐行